NEPETIDONE AND NEPEDINOL, TWO NEW TRITERPENOIDS FROM NEPETA HINDOSTANA

VIQAR UDDIN AHMAD and FARYAL VALI MOHAMMAD

H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-32, Pakistan

Nepeta hindostana (Roth) Haines, (Labiatae) is an important medicinal plant of the Indo-Pakistan subcontinent. In the Greco-Arab system of medicine, popularly practised in Pakistan, the plant is known as "Badranj-e-Boya," and its decoction is used as a cardiac tonic, in fevers, and as a gargle for sore throat (1). Its alcoholic extract has been shown to possess hypocholesteremic activity (2).

We have reported earlier the isolation of new triterpenes of the lup-20(29)-ene series from this plant (3-6). We now record the isolation and structure elucidation of a new nortriterpenoid ketone, nepetidone (1), and a new triterpenoid tetraol, nepedinol (2), from the same source.

Nepetidone (1) was eluted with $C_{c}H_{c}$ -EtOAc (10:90) from the silica gel column, purified by repeated column chromatography and crystallized from MeOH as colorless crystals. It analyzed for C29H48O4, and its uv spectrum in MeOH showed end absorption at 220 nm with a shoulder at 275 nm. The ir spectrum revealed the presence of hydroxyl (3400-3200 cm⁻¹ br), and ketone (1700 cm^{-1}) . In the eims, the molecular ion peak is absent; the highest peak at m/z 442 represents the M⁺-H₂O peak. However, the field desorption (fd) and the fabras show strong M^+ and M^++1 peaks at m/z 460 and 461, respectively. The eims shows further peaks at m/z424, 370, 355, 327, 309, and 283 which are reminiscent of the ms of $[1\beta, 3\beta, 11\alpha$ -trihydroxynepetidin, lup-20(29)-ene] (3), a triterpenoid isolated by us from the same plant (4). Some of the peaks of nepetidone are 2 mu higher than the corresponding ones of 3, and the hrms shows that this is due to the replacement of $C=CH_2$ of nepetidin with C=O in nepetidone.

The relationship between nepetidin and nepetidone is clearly indicated by ¹H- and ¹³C-nmr spectroscopic studies. The ¹H-nmr spectrum (300 MHz) of **1** in C₅D₅N shows methyl singlets at δ 0.78, 1.03 (6H, 2×CH₃), 1.11, 1.25, 1.32, and 2.10, the last singlet being due to the COCH₃ group. The spectrum further shows carbinylic proton signals at δ 3.59 (dd, J=12, 3.8 Hz, H-3), δ 3.98 (dd, J=11, 4.7 Hz, H-1) and δ 4.12 (m, H-11). There is a sextet centered at δ 2.67 (J=11, 11, 5.7 Hz) which is assigned to H-19 adjacent to a carbonyl group.

On acetylation, **1** yields a 3, 11-diacetate (**1a**), as was observed also in the case of **3**. The 1 β -hydroxyl group, being sterically hindered, does not react with Ac₂O. In the ¹H-nmr spectrum of the diacetate recorded in CDCl₃, the signals due to H-3 and H-11 are shifted to δ 4.50 (dd, J=11.9 Hz, 4.1 Hz), δ 4.94 (ddd, J=9.5, 9.5, 8.5 Hz), respectively, whereas the H-1 signal is seen as a dd at δ 3.68 (J=10.9, 4.98 Hz). The slight variation in the chemical shifts of H-1 in **1** and **1a** is due to the difference in solvent in which their spectra were recorded.

Table 1 shows the chemical shifts and assignments in the ¹³C-nmr spectra of compounds **1** and **3** recorded in the same solvent (C_5D_5N). The ¹³C-nmr spectrum of 3 β -hydroxy-30-norlupan-20one (**4**) prepared from an authentic sample of lupeol by the OsO₄ method (7) is also included in Table 1 for comparison. The assignments were made on the basis of DEPT experiments as well as the known ¹³C-nmr chemical shifts of lup-20(29)-ene derivative (3-6).

May-Jun 1986] Ahmad and Mohammad: New Triterpenoids

Carbon No.	Compound			
	1	2	3	4
1	66.45	66.69	66.57	39.29 ^m
2	35.29ª	37.65°	36.24 ⁱ	27.88 ⁿ
3	75.06 ^b	75.15 ^f	75.12 ^j	78.10
4	39.96	42.82	39.97	39.53
5	58.23	58.25	58.22	55.88
6	18.78	18.82	18.80	18.81
7	35.29ª	35.80°	35.85 ⁱ	34.66°
8	42.70 ^c	43.00 ^g	42.74 ^k	41.08
9	52.19 ^d	53.52	53.50	50.70 ^p
10	46.33	46.40	46.34	37.34
11	76.50 ⁵	76.61 ^f	76.54 ^j	21.15
12	34.96ª	35.12°	35.09 ⁱ	27.56 ⁿ
13	35.23	36.31	36.19	37.53
14	42.76°	43.27 ^g	43.10 ^k	42.41 ^q
15	28.05	32.41	30.20	27.71 ⁿ
16	38.01	38.06	37.95	35.30°
17	43.16°	43.27 ^g	43.17 ^k	43.22 ^q
18	49.42	49.09	48.73	49.66
19	53.45 ^d	44.01	48.19	52.51P
20	211.36	156.27	150.60	211.38
21	27.84	28.06	28.0	28.31"
22	39.96	40.04	40.10	40.18 ^m
23	29.39	28.68	28.67	29.23
24	14.22	14.38 ^h	14.37 ¹	16.18
25	15.65	15.70	15.66	16.36
26	17.67	17.75	17.75	16.42
27	14.22	14.28 ^h	14.25^{1}	14.67
28	18.23	18.06	18.31	18.13
29		106.64	110.27	
30	28.64	64.44	19.39	28.68

TABLE 1. ¹³C-nmr Chemical Shifts (in ppm) of 1, 2, 3, and 4 in C₅D₅N

^{a-p}Assignments may be reversed.

From the spectroscopic evidence, it is concluded that nepetidone has structure **1**. This is confirmed through chemical conversion of **3** into **1**; nepetidin (**3**) was treated with OsO_4 , and the pentaol (**5**) so formed was cleaved with periodic acid yielding **1**.

Nepedinol (2) was isolated from the fractions eluted with EtOAc-MeOH (95:5) from the silica gel column, purified by repeated column chromatography and crystallized from MeOH as small colorless crystals. Its fabms showed $M^+ + H$ peak at m/z 475, corresponding to the formula $C_{30}H_{50}O_4$. In the eims, no molecular ion peak is observed, the highest peak at m/z 456.3603 ($C_{30}H_{48}O_3$) corresponding to the $M^+ - H_2O$. It shows further peaks at 438, 384, 341, 323, 271, 201, 135, and 107. Some of the peaks of nepedinol are 16 mu higher than the corresponding ones of 3. Its ir spectrum in KBr revealed the presence of hydroxyl (3350 cm⁻¹), but no band due to carbonyl group is observed. The uv spectrum had a maximum at 202 nm (end absorption). The ¹H-nmr spectrum (C_5D_5N , 300 MHz) of 2 showed six tertiary methyl signals at δ 0.84, 1.05 (s, 6H, 2×CH₃), 1.13, 1.27, and 1.33. A singlet at δ 4.47 (2H) is due to CH_2OH , and nearby singlets with fine splitting at δ 5.12 and 5.41 can be assigned to the two H-29 protons. The secondary carbinylic proton signals are observed at δ 3.64 (m, H-3), δ 4.01 (dd, J = 11, 4.7 Hz, H-1) and a distorted hextet at δ 4.13 (H-11). A

broad signal at δ 4.47 is due to the two CH_2OH protons. Thus, it appears that nepedinol has a structure which is closely related to nepetidin (3). However, the absence of vinylic methyl, the presence of a CH_2OH group, only six tertiary methyl groups, and the relative downfield shift of H-29 signal, all indicate that C-30 contains a primary hydroxyl group.

All of the spectroscopic data cited above indicate that the structure of nepedinol is 1β , 3β , 11α ,30-tetrahydroxy-lup-20(29)-ene. This proposed structure was also supported by the ¹³Cnmr spectrum of **2** (Table 1) which shows that there are four carbon atoms bearing oxygen functions at δ 66.69 (C-1), 75.15 (C-3), 76.61 (C-11), and 64.44 ppm (C-30).

Acetylation of 2 with Ac_2O and pyridine furnished at 3,11,30-triacetate (2a). In the ¹H-nmr spectrum of the triacetate recorded in CDCl₃, the signal due to H-30 is shifted to δ 4.52 (brs) partly superimposed by a double doublet centered at δ 4.51 due to H-3. The H-11 multiplet at δ 4.95 is masked by two broad singlets at δ 4.90 and δ 4.97 due to the two H-29 protons. The H-1 multiplet is observed at δ 3.64.

On the basis of the above spectra, structure 2 is suggested for nepedinol. This structure was also supported by a comparison of the ¹³C-nmr spectral data of 2 with those of 1 and 3. (Table 1).

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.-Melting points were determined on a Gallenkamp melting point apparatus. Uv spectra were measured in MeOH with a Shimadzu UC 240 Graphicord spectrometer. Ir spectra were prepared with a Jasco A-302 spectrometer. The ¹H-nmr (300.13 MHz) and ¹³C-nmr (75.43 MHz) spectra were recorded on a Bruker AM-300 spectrometer in C₅D₅N. The DEPT experiments were carried out with $\theta = 45^\circ$, 90°, and 135°; the quaternary carbons were determined by substraction of these spectra from the broad band ¹³C-nmr spectrum. The ei, fd, and fabms spectra were recorded on a Finningan MAT 312 double focusing ms spectrometer coupled with PDP 11/34 computer system. Tlc was carried out on silica gel plates using the following solvent systems: CHCL₃-MeOH (17:3), (19:1); (8:2), and (9:1); spots were visualized by spraying with ceric sulfate solution in 10% H₂SO₄ followed by heating.

PLANT MATERIAL.—The plant material was purchased from the local market and identified by the Department of Pharmacognosy, University of Karachi. A voucher specimen has been deposited in the herbarium of the Department of Botany, University of Karachi.

EXTRACTION AND ISOLATION.—The plant material was extracted three times with *n*-hexane and then with EtOH. The combined ethanolic extract was evaporated under reduced pressure, leaving behind a greenish, syrupy residue which was then partitioned between EtOAc and H_2O . The EtOAc layer was evaporated under reduced pressure, yielding a green, gummy material which was then subjected to column chromatography on silica gel. Elution was carried out with a gradient of increasing polarity in the order of *n*hexane, C_6H_6 , EtOAc, and MeOH.

NEPETIDONE (1).—Compound 1 was eluted from the silica gel column with C_6H_6 -EtOAc (10:90). It was further purified by repeated (three times) column chromatography on silica gel, and crystallized from MeOH as colorless crystals (25 mg); mp 300° dec; $[\alpha]D - 28.13^{\circ}$ (c=0.32, MeOH); uv \lambda max (MeOH) 220 nm (end absorption); ir v max (KBr) 3200-3500 br (OH), 1700 (C=O), 1460, 1382, 1360, 1180, 1000 cm⁻¹; ¹H nmr (300 MHz, C_5D_5N) δ 0.78 (s, CH_3), 1.03 (s, 6H, $2 \times CH_3$), 1.11 (s, CH_3), 1.25 (s, CH₃), 1.32 (s, CH₃), 2.10 (s, COCH₃), 2.67 (sext, J=11, 11, 5.7 Hz, H-19), 3.59 (dd, J=12, 3.8 Hz, H-3), 3.98 (dd, J=11, 4.7 Hz, H-1), 4.12 (m, H-11); ¹³C nmr see Table 1; fdms 460 (M⁺); fabms 461 (M⁺ + 1); eims M⁺ absent, 442.344 (6, M^+-H_2O , calcd for $C_{29}H_{46}O_3$, 442.345), 424 (12, $M^+ - 2H_2O$), 370.322 (31, calcd. for C₂₆H₄₂O, 370.323), 327.268 (88, calcd for C23H35O, 327.269), 309.257 (26, calcd. for C23H33, 309.258), 257 (8), 283 (12), 231 (14), 205 (30), 163 (34), 135 (84), 107 (100), 95 (88). Anal. calcd for: C29H48O4. C, 75.60; H, 10.50. Found: C, 73.67; H, 10.57.

ACETYLATION OF 1.—Compound 1 (10 mg) was dissolved in pyridine (1 ml) and treated with Ac₂O (3 ml) at room temperature overnight. Ice was added to the reaction mixture which was extracted with EtOAc and H₂O. The EtOAc layer was evaporated to yield the diacetate (1a), which could not be crystallized. It, however, appeared pure by tlc. Ir $\nu \max (KBr) 3500-3400 \text{ br (OH)}$, 2850, 1750 (OCOCH₃), 1300, 1260-1160, 1000 cm⁻¹; ¹H nmr (300 MHz, CDCl₃) δ 0.76 (s, CH₃), 0.82 (s, CH₃), 0.85 (s, CH₃), 0.97 (s, CH_3), 1.00 (s, 6H, 2× CH_3), 1.94 (s, OCOCH₃), 2.04 (s, OCOCH₃), 2.14 (s, COCH₃), 2.61 (sext, J=11, 11, 5.67 Hz, H-19), 3.68 (dd,J = 10.9, 4.98 Hz, H-1, 4.50 (dd, J = 11.9, 4.1Hz, H-3), 4.94 (ddd, J=9.5, 9.5, 8.5 Hz, H-11); eims m/z M⁺ absent, 484 (2, M⁺-AcOH), $M^+ - AcOH - H_2O)$, 466 (4, 424 (6, M^+ – 2AcOH), 406, (8, M^+ – 2AcOH-H₂O), 327 (100), 309 (26)], 283 (12), 231 (14), 205 (30), 163 (34), 135 (84), 107 (100), 95 (68).

CONVERSION OF **3** INTO **1**.—Compound **3** was treated with OsO_4 (8) in the presence of dioxane for 5 days to yield the pentaol (5); eims m/z M⁺ absent, 456 (3, M⁺-2H₂O), 438 (6), 384 (4), 341 (18), 283 (28), 161 (38), 135 (62), 107 (100), 95 (98). **5** was cleaved with periodic acid yielding **1**, which was identified through co-tlc, superimposible ir spectra and mixed melting points.

NEPEDINOL (2).—Compound 2 was eluted from the fractions eluted with CHCl₃-MeOH

(19:1), purified and crystallized as described above in the case of 1; mp 282° dec.; $[\alpha]D$ -18.67° (c=0.75, C₅D₅N); uv λ max (MeOH) 202 nm (end absorption); ir v max (KBr) 3350 (OH), 2950 cm⁻¹; ¹H nmr (300 MHz, C₅D₅N) 0.84 (s, CH_3), 1.05 (s, $6H_1$, $2 \times CH_3$), 1.13 (s, CH_3 , 1.27 (s, CH_3), 1.33 (s, CH_3), 3.64 (m, H-3), 4.01 (dd, J=11, 4.7 Hz, H-1), 4.13 (distorted hext, H-11), 4.47 (s, CH₂OH), 5.12 (brs) and 5.41 (brs) (2×H-29); ¹³C nmr see Table 1; fabms 475 (M⁺+1); eims m/z (M⁺ absent), 456.361 (6, M⁺-H₂O, calcd. for C₃₀H₄₈O₃, 456.360), 438.351 (8, M⁺-2H₂O, calcd. for C30H46O2, 438.349), 384.338 (12, calcd. for C27H44O, 384.339), 341.285 (32, calcd. for C24H37O, 371.284), 323.274 (34, calcd. for C₂₄H₃₅, 323.273), 271 (6), 201 (22), 135 (60), 107 (95), 95 (100).

ACETYLATION OF 2.—Compound 2 was acetylated as 1 to yield 2a. Ir ν max (CDCl₃) 3500 (OH), 2950, 1700 (OCOCH₃), 1240 (C-O stretching), 1020, 760 cm⁻¹; ¹H nmr (300 MHz, CDCl₃) δ 0.77 (s, CH₃), 0.82 (s, CH₃), 0.85 (s, CH₃), 0.97 (s, CH₃), 0.98 (s, CH₃), 1.02 (s, CH₃), 1.98 (s, OCOCH₃), 2.04 (s, OCOCH₃), 2.09 (s, OCOCH₃), 3.64 (m, H-1), 4.51 (dd, H-3), 4.52 (br.s, H-30), 4.90 and 4.97 (br.s, 2×H-29); eims m/z M⁺ absent, 540 (4, M⁺-AcOH), 480 (6, M⁺-2AcOH), 462 (3, M⁺-2AcOH-H₂O), 420 (4), 383 (31), 323 (100), 267 (7), 201 (28), 107 (80), 95 (74).

LITERATURE CITED

- R.N. Chopra, S.L. Nayer, and I.C. Chopra, "Glossary of Indian Medicinal Plants," Council of Scientific and Industrial Research, New Delhi, 1956, p. 175.
- H.M. Said, Ed., "Hamdard Pharmacopoeia of Eastern Medicine," Hamdard Foundation of Pakistan, Karachi, 1969, p. 446.
- V.U. Ahmad, S. Bano, W. Voelter, and W. Fuchs, *Tetrabedron Lett.*, 22, 175 (1981).
- V.U. Ahmad, S. Bano, W. Voelter, and W. Fuchs, Z. Naturforsch., 37b, 1675 (1982).
- V.U. Ahmad, S. Bano, and F.V. Mohammad, *Fitoterapia*, 55, 244 (1984).
- 6. V.U. Ahmad, S. Bano, and F.V. Mohammad, *Planta Med.*, 6, 521 (1985).
- E.R.H. Jones and R.H. Meakins, J. Chem. Soc. (London), 1, 456 (1940).
- R. Ruzicka and M. Brenner, Helv. Chim. Acta, 23, 1328 (1940).

Received 28 October 1985